176 research outputs found

    A comparison of ultraviolet sensitivities in universal, nonuniversal, and split extra dimensional models

    Full text link
    We discuss the origin of ultraviolet sensitivity in extra dimensional theories, and compare and contrast the cutoff dependences in universal, nonuniversal and split five dimensional models. While the gauge bosons and scalars are in the five dimensional bulk in all scenarios, the locations of the fermions are different in different cases. In the universal model all fermions can travel in the bulk, in the nonuniversal case they are all confined at the brane, while in the split scenario some are in the bulk and some are in the brane. A possible cure from such divergences is also discussed.Comment: 9 pages, Latex, no figure, v2: further clarifications and references added, accepted for publication in Phys. Rev.

    Top Quark Properties in Little Higgs Models

    Full text link
    We study the shifts in the gauge couplings of the top quark induced in the Littlest Higgs model with and without T parity. We find that the ILC will be able to observe the shifts throughout the natural range of model parameters.Comment: 3 pages, 4 figures. Contributed to 2005 International Linear Collider Physics and Detector Workshop and 2nd ILC Accelerator Workshop, Snowmass, Colorado, 14-27 Aug 200

    Identifying the contributions of Universal Extra Dimensions in the Higgs sector at linear e+ e- colliders

    Full text link
    We study the dilepton-dijet signal in the dominant Higgs production channel at a linear e+ e- collider. We estimate the effects of Universal Extra Dimension (UED) by a simple analysis of the cross-sections. The heavy Kaluza-Klein excitations of the Standard Model fields in UED can significantly alter the decay properties of the Higgs boson to loop-driven final states. We show that by taking a simple ratio between cross-sections of two different final states this difference can be very easily highlighted.Comment: Some parts of the text modified. 1 figure added. Version to appear in IJMP

    Effects of Universal Extra Dimensions on Higgs signals at LHC

    Full text link
    A major focus at the Large Hadron Collider (LHC) will be Higgs boson studies and it would be an interesting prospect to simultaneously probe for physics beyond the Standard Model (SM) in the Higgs signals. In this work we show as to what extent, the effects of Universal Extra Dimension (UED) can be isolated at the LHC through the Higgs signals. By doing a detailed study of the different uncertainties involved in the measurement of the rates for the process pp --> h --> gamma gamma we estimate the extent to which these uncertainties can mask the effects of the contributions coming from UED.Comment: 13 pages, LateX, Title changed, text and figures modified. Version to appear in IJMP

    Strategies to link tiny neutrino masses with huge missing mass of the Universe

    Full text link
    With the start of the LHC, interest in electroweak scale models for the neutrino mass has grown. In this letter, we review two specific models that simultaneously explain neutrino masses and provide a suitable DM candidate. We discuss the implications of these models for various observations and experiments including the LHC, Lepton Flavor Violating (LFV) rare decays, direct and indirect dark matter searches and Kaon decay.Comment: 17 pages, one diagram, talk given at International Conference on Flavor Physics in the LHC era in Singapor

    The impact of the LHC Z-boson transverse momentum data on PDF determinations

    Get PDF
    The LHC has recently released precise measurements of the transverse momentum distribution of the Z-boson that provide a unique constraint on the structure of the proton. Theoretical developments now allow the prediction of these observables through next-to-next-to-leading order (NNLO) in perturbative QCD. In this work we study the impact of incorporating these latest advances into a determination of parton distribution functions (PDFs) through NNLO including the recent ATLAS and CMS 7 TeV and 8 TeV pTZ data. We investigate the consistency of these measurements in a global fit to the available data and quantify the impact of including the pTZ distributions on the PDFs. The inclusion of these new data sets significantly reduces the uncertainties on select parton distributions and the corresponding parton-parton luminosities. In particular, we find that the pTZ data ultimately leads to a reduction of the PDF uncertainty on the gluon-fusion and vector-boson fusion Higgs production cross sections by about 30%, while keeping the central values nearly unchanged.This research was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915 to the Kavli Institute of Theoretical Physics in Santa Barbara. R. B. is supported by the DOE contract DE-AC02-06CH11357. F. P. is supported by the DOE grants DE-FG02- 91ER40684 and DE-AC02-06CH11357. M. U. is supported by a Royal Society Dorothy Hodgkin Research Fellowship and partially supported by the STFC grant ST/L000385/1. A. G. is supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No 659128 - NEXTGENPDF. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357

    A novel ultrafast-low-dose computed tomography protocol allows concomitant coronary artery evaluation and lung cancer screening

    Get PDF
    BACKGROUND:Cardiac computed tomography (CT) is often performed in patients who are at high risk for lung cancer in whom screening is currently recommended. We tested diagnostic ability and radiation exposure of a novel ultra-low-dose CT protocol that allows concomitant coronary artery evaluation and lung screening. METHODS: We studied 30 current or former heavy smoker subjects with suspected or known coronary artery disease who underwent CT assessment of both coronary arteries and thoracic area (Revolution CT, General Electric). A new ultrafast-low-dose single protocol was used for ECG-gated helical acquisition of the heart and the whole chest. A single IV iodine bolus (70-90 ml) was used. All patients with CT evidence of coronary stenosis underwent also invasive coronary angiography. RESULTS: All the coronary segments were assessable in 28/30 (93%) patients. Only 8 coronary segments were not assessable in 2 patients due to motion artefacts (assessability: 98%; 477/485 segments). In the assessable segments, 20/21 significant stenoses (> 70% reduction of vessel diameter) were correctly diagnosed. Pulmonary nodules were detected in 5 patients, thus requiring to schedule follow-up surveillance CT thorax. Effective dose was 1.3 ± 0.9 mSv (range: 0.8-3.2 mSv). Noteworthy, no contrast or radiation dose increment was required with the new protocol as compared to conventional coronary CT protocol. CONCLUSIONS:The novel ultrafast-low-dose CT protocol allows lung cancer screening at time of coronary artery evaluation. The new approach might enhance the cost-effectiveness of coronary CT in heavy smokers with suspected or known coronary artery disease

    Singlet Fermionic Dark Matter explains DAMA signal

    Full text link
    It has been suggested that, considering channeling effect, the order of a few GeV dark matters which are elastically scattered from detector nuclei might be plausible candidates reconciling the DAMA annual modulation signal with the results of other null experiments. We show that Singlet Fermionic Dark Matter can be such a dark matter candidate, simultaneously providing the correct thermal relic density which is consistent with the WMAP data.Comment: 9 pages, 3 figure
    • …
    corecore